# ANALYSIS OF THE FLORISTIC DIVERSITY OF THE REGION OF BÉNI-SAF

#### Benabdelmoumeme F.\*, Mezouar K. and Benabadji N.

Laboratory of Ecology and Natural Ecosystem Management, University of Tlemcen, Tlemcen, Algeria

### Abstract

The present study concerns a flora located in North-West Algeria, it was devoted to the analysis of the effect of the main ecological and anthropogenic factors on plant communities.

The flora to study is in character herbaceous and or more or less shrubby where we have noticed the high proportion of Mediterranean species, it is represented essentially by the family of Asteraceae. On the statistical plan, we have tried to explain some relationships that link plant groups to environmental factors, especially climatic and edaphic factors where floristic analysis by the AFC numerical method presents a remarkable floristic richness explained by the rate of inertia which remains average nearby the disturbances which they underwent.

Key words: inventory, flora, halophytes, ecological factors, Beni-saf, Tlemcen.

#### Introduction

The diversity of landscapes that is the result of the mosaic created by interacting ecosystems can be described according to the surface of the various ecosystems and the distance between them (Dajoz, 2000), indeed Gounot (1969) was also interested in the structure of the vegetal carpet and declared in particular "first of all the vegetable carpet has often, if not always, an aspect in mosaics, the homogeneity of the vegetal carpet can only exist if the mosaic is respectively, that is to say, results from a more or less regular arrangement of its different parts. However, disturbances play a major role in the heterogeneity of spatial and temporal structure as well as in the dynamics of natural communities; they are agents of natural selection in the evolution of adaptive strategies (Sousa, 1984).

Located in a transition region from a climactic point of view and difficult supporting summer drought, The natural vegetation of the Mediterranean countries is fragile and it has not withstood the millennial degradations of man (Huelz, 1970). The reason that led us to carry out floristic inventories in stations located in the north-west of Algeria to know the state and the floristic wealth of this region.

For this study, our choice focuses on the holophytic plants that can be led to other species (of matorral among

others) whose objective is to put and also describe the plant species. Among the studies carried out on halophytes we will particularly remember the work of the authors: Aboura *et al.*, (2006) Benabadji (1995); Merzouk *et al.* (2010); Sari Ali (2004 et 2012); Benabdelmoumene (2011-2018) ; Mezouar (2016).

# Methodology

We used the method transect surveys in plots (100m<sup>2</sup>) choosing sites as typical as possible by noting environmental conditions (Gounot, 1969), Since linear analysis does not give an exhaustive inventory of the floristic composition of a plant group, but it nevertheless makes it possible to determine the main dominant species in these anthropized environments for the most part and often very numerous short-cycle therapeutic species with their respective specific contributions (Cesar, 1990).

The method we used was to inventory the herbaceous and woody subjects, to calculate the fraction of biological types, morphological and biogeographic types and families will also be provided, which corresponds to the Rankiaer botanical characterization (1904).

Which remains in our opinion the most used, it is clear of a simple application and its great ecological value for dry-season climates is recognized by many authors (Emberger, 1971), this classification is based on the position of the buds of renewal during the adverse season.

<sup>\*</sup>Author for correspondence : E-mail : benabdelmoumene.f@gmail.com

# Morphological characterizations



Fig. 1: Distribution of morphological types

The percentages displayed for the three morphological types indicate that the annuals far outweigh the perennial species. (Perennials and woody). State of affairs shows indeed that these ecosystems still retain the stigmata of a remarkable borrowing of anthropic action.

#### **Biological characterizations**



Fig. 2: Distribution of biological types

The biological spectrum analysis of the global flora encountered shows that therophytes dominate by their number, this dominance which reflects the Mediterranean character of the region and the resultant of the effect of the aridity and the strong pressure exerted by the man and his cattle. However, Daget (1980) affirms that thérophysation is a characteristic of arid zones and expresses a strategy of adaptation to unfavorable conditions and a form of resistance to climatic rigors (Daget, 1980). Therophytes represent the expression of adaptation to disturbed habitats Grime (1979) whose, they reflect its ability to cope not only with the peculiarities of the Mediterranean climate, but also to resist these most common disturbances in its habitat (Pantis and Margaris, 1988). The number of Phanerophytes, Hemycrypthophytes and Geophytes regresses with the aridity and the opening of the medium, while those of Therophytes and Chamaephytes progress (Kadi Hanifi, 2003).

# **Biogeographic characterizations**



Fig. 3: Distribution of phytogeographic types

The flora is dominated by an essentially Mediterranean strain that records 38%, followed by the penetration of foreign elements, with a small presence of endemic elements 1%, however, the area of a plant is considered endemic when it is strictly localized in a restricted area (Huetz De Lemps, 1970).

Quézel (1964) states that the Mediterranean elements dominate so in an absolute way so much for all the flora than at the level of endemic species. For the latter, if many derive from native species, For the latter, If many derive from species indigenous.

# **Characterizations of families**

Concerning the representation of families, Asteraceae (27%), Poaceae (11%) and Fabaceae (9%) are the most important families. The other remarkable



Fig. 4: Distribution of families

| Table 1: Sp | becies inver | ntoried in the | Béni-Saf station |
|-------------|--------------|----------------|------------------|
|-------------|--------------|----------------|------------------|

|                          | Morpho-  | Biolo- |                            |                         |                 |
|--------------------------|----------|--------|----------------------------|-------------------------|-----------------|
| Taxas                    | liogical | gical  | Biogeographic types        | In Arabic               | Families        |
|                          | types    | types  |                            |                         |                 |
| (1)                      | (2)      | (3)    | (4)                        | (5)                     | (6)             |
| Adonis annua             | HA       | TH     | EURAS                      | CHOULLETAN              | Renonculacées   |
| Aegilops triuncialis     | HA       | TH     | MED-IRANO-TOUR             | SBOULTELFAR             | Poacées         |
| Anagallis arvensis       | HA       | TH     | SUB-COSMOP                 | LIZIREG                 | Primulacées     |
| Artemisia herba-alba     | HV       | СН     | CANARIES -L'EGYPTEASIE.OCC | CHIHA, ISFI,<br>ZEZZARE | Astéracées      |
| Asparagus acutifolius    | HV       | Œ      | MED                        | /                       | Liliacées       |
| Asphodelus microcarpus   | HV       | Œ      | CANAR MED                  | BEROUAGUE               | Liliacées       |
| Asteriscus maritimus     | HA       | CH     | CANAR EUR MERID-N A        | KERKABA                 | Astéracées      |
| Asteriscus pygmaeus      | HA       | CH     | SAH-SIND                   | NESRINE                 | Astéracées      |
| Atractylis gummifera     | HV       | CH     | MED                        | HEDDAD                  | Astéracées      |
| Atriplex halimus         | HV       | CH     | COSM                       | ARAMASS                 | Chénopodiacées  |
| Avena bromoides          | HA       | TH     | MED                        | /                       | Poacées         |
| Avena sterilis           | HA       | TH     | MACAR-MED-IRANO-TOUR       | KHORTAM                 | Poacées         |
| Bromus madritensis       | HA       | TH     | EUR-MED                    | NESLI                   | Poacées         |
| Calendula arvensis       | HA       | TH     | SUB-MED                    | /                       | Astéracées      |
| Calendula suffruticosa   | HV       | HE     | ESP-NA                     | MOURIRA                 | Astéracées      |
| Calycotome intermedia    | IV       | CH     | W-MED                      | GUENDOUL                | Fabacées        |
| Carthamus caeruleus      | HV       | HE     | MED                        | GERGAA                  | Astéracées      |
| Centaurea involucrata    | HA       | TH     | END, ALG, MAR              | SOGUIA                  | Astéracées      |
| Centaurea pullata        | HA       | TH     | MED                        | SEGUIA                  | Astéracées      |
| Chrysanthemum coronarium | HA       | CH     | MED                        | MOURARA                 | Astéracées      |
| Cistus albidus           | IV       | CH     | MED                        | ATAI                    | Cistacées       |
| Convolvulus althaeoides  | HA       | TH     | MACAR-MED                  | LOUIA                   | Convolvulacées  |
| Cytisus triflorus        | HV       | CH     | W-MED                      | GIKIO                   | Fabacées        |
| Dactylis glomerata       | HV       | HE     | PALEO-TEMP                 | DOUKNA                  | Poacées         |
| Daucus carota            | HA       | TH     | MED                        | SENAYRAI                | Apiacées        |
| Echinops spinosus        | HV       | HE     | S-MED-SAH                  | KACHIR                  | Astéracées      |
| Echium vulgare           | HA       | HE     | MED                        | TAIHLOU                 | Borraginacées   |
| Erodium moschatum        | HA       | TH     | MED                        | <b>EBRA ERRAAI</b>      | Géraniacées     |
| Eryngium maritimum       | HV       | CH     | EURO-MED                   | LAHIET EL MAZA          | Apiacées        |
| Galactites tomentosa     | HA       | TH     | CIRCUMMED                  | <b>CHOUQ ELAMIR</b>     | Astéracées      |
| Hertia cheirifolia       | HV       | CH     | END-ALG-TUN                | KHERCHOUN               | Astéracées      |
| Hordeum murinum          | HA       | TH     | CIRCUMBOR                  | /                       | Poacées         |
| Lavandula dentata        | IV       | CH     | W-MED                      | DJAIDA                  | Lamiacées       |
| Lavandula multifida      | HV       | CH     | MED                        | KEMMOUNE                | Lamiacées       |
|                          |          |        |                            | EJJEMEL                 |                 |
| Lavatera maritima        | HV       | CH     | W-MED                      | KERMELAMER              | Malvacées       |
| Lygeum spartum           | HV       | Œ      | W-MED                      | SENNAQ                  | Poacées         |
| Malva sylvestris         | HA       | TH     | EURAS                      | KHOBBIZ                 | Malvacées       |
| Nigella damascena        | HA       | TH     | MED                        | NOUAREL                 | Renonculacées   |
|                          |          |        |                            | MEQUITTFA               |                 |
| Olea europea             | IV       | PH     | MED                        | ZEBOUDJ                 | Oléacées        |
| Pallenis spinosa         | HV       | CH     | EURO-MED                   | NOUGD                   | Astéracées      |
| Papaver rhoeas           | HA       | TH     | PALEO-TEMP                 | <b>BEN NAAMEN</b>       | Papavéracées    |
| Paronychia argentea      | HA       | TH     | MED                        | KHIATA                  | Caryophyllacées |

Table 1 continued .....

| (1)                      | (2) | (3) | (4)           | (5)           | (6)            |
|--------------------------|-----|-----|---------------|---------------|----------------|
| Pinus maritimus          | IV  | PH  | W-MED         | TAIDA         | Pinacées       |
| Plantago lagopus         | HA  | TH  | MED           | DHENAI        | Plantaginacées |
| Plantago ovata           | HA  | TH  | MED           | ALOURA        | Plantaginacées |
| Polypogon monspeliensis  | HA  | TH  | PALEO-SUBTROP | SARELFAR      | Poacées        |
| Raphanus raphanistrum    | HA  | TH  | MED           | /             | Brassicacées   |
| Reichardia tingitana     | HA  | TH  | MED           | RERHIM        | Astéracées     |
| Santolina rosmarinifolia | IV  | PH  | IBERO-MAUR    | QEIÇOUN       | Astéracées     |
| Senecio vulgaris         | HA  | CH  | SUB-COSMP     | ACHEBA SALEMA | Astéracées     |
| Sinapis arvensis         | HA  | TH  | PALEO-TEMP    | AOUERDENE     | Brassicacées   |
| Tamarix gallica          | IV  | PH  | N, TROP       | TARFA         | Tamaricacées   |
| Tetragonolobus purpureus | HA  | TH  | MED           | GUERNICH      | Fabacées       |
| Thapsia garganica        | HV  | CH  | MED           | DERIAS        | Apiacées       |
| Trifolium angustifolium  | HA  | TH  | MED           | OUNDJA        | Fabacées       |
| Urginea maritima         | HV  | Œ   | CAN-MED       | BASSILA       | Liliacées      |
| Urospermum dalechampii   | HV  | СН  | CIRCUMMED     | BELEHEN       | Astéracées     |
| Withania frutescens      | ĪV  | PH  | IBERO-MAR     | BENOUR        | Solanacées     |

#### Table 1 continued .....

HA: Annual Herbaceous, HV: Perennial Herbaceous, LV: Woody Perennial, Ph: Phanérophytes, Ch: Chamaephytes Th: Thérophytes, Ge: Géophytes, He: Hémicryptophytes

families are on the one hand Liliaceae (5%), Brassicaceae (4%), Lamiaceae (4%) while Chenopodiaceae, which are indicative of saline soils, presents a percentage of (3%), which explains the decrease in diversity by the strong regeneration capacity of Poaceae compared to other families (Fischer and Wipf, 2002).

## Axis1:



Fig. 5 : Plan factoriel 1,2 des espèces

The species follow a gradient of aridity, on the positive side are steppe species (*Lygeum spartum*), and for the negative side, the soil is less rich in organic matter where are installing the species to matorral.

# Axis 2:

The species follow an anthropogenic gradient, where the positive side of the axis is assigned to lawn species *Carthamus caeruleus, Echinops spinosus, Daucus carota* as opposed to the negative side which is individualized by species of soils poor in organic matter.



Fig. 6 : Plan factoriel 2,3 des espèces

# Conclusion

Plant communities are herbaceous character and more or less shrubby where we see the dominance of poaceae (*Lygeum spartum*) and of the Camaephytes (*Artemisia herba alba*).

In total, spectrum characteristic of the association can be synthesized as a combination of Therophytes and Chamaephytes.

The results that emerge from the methods of floristic analysis highlight a strong variety of floristic composition this variability is closely related to the heterogeneity of vegetation and fluctuations in ecological factors.

#### References

Aboura, R. (2006). Phyto-ecological comparison of Atriplexaies located north and south of Tlemcen *.Thesis Mag. School. Veg. Univ. Tlemcen.*,171 p. + annexes.

- Benabadji, N. (1995). Phyto-ecological study of steppes at Artemisia herba alba Asso. and to Salsola vermiculata
  L. South of Sebdou (Oranie-Algeria). Thesis Doct. Isa. Sci., Univ. Tlemcen., 280 p.
- Benabdelmoumene, F. (2011). Floristic inventory in some stations located in the region of Hammam Boughrara (Oranie).
- Benabdelmoumene, F. (2018). Contribution to a phytoecological study of stands in the region of Hammam Boughrara (Oranie). Mem. Doc. Uni. Tlemcen. 166p.
- Cesar, J. (1990). Study of organic production of savannahs of Ivory Coast and its use by man: biomass, pastoral value and forage production, Thesis, Univ. Paris VI, 609 p.
- Daget, Ph. (1980). A current element of the characterization of the Mediterranean world The climate naturalia Monspeliensis; N°out of series: 101-125
- Dajoz, R (2000). Accurate ecology. Ed. Dunod. 505p. *Emberger* L. (1971). Botany and ecology work Mass. et Cie, Paris, 520 p.
- Fischer, M. and S. Wipf (2002). Effect of low-intensity grazing on the species-rich vegetation of traditionally mown subalpine meadows. *Biological Conservation*, **104**: 1-11.
- Gounot, M. (1969). Quantitative vegetation survey methods. Mass. et Cie. Paris. 314p.
- Grime, J.P. (1979). Plant statégies and vegetation processes chichester: Wiley.
- Huetz De Lemps, A (1970). The vegetation of the earth Mass. et Cie Paris VI. 133p.

- Kadi Hanifi, H. (2003). Biological and phytogeographic diversity of *Stipa tenacissima* formations from Algeria. *Rev. Sech.*, **14 (3)**: 169-179.
- Merzouk, A. (2010). Contribution to the phytoecological study and biomorphology of halophilic plant communities in the Oran region (Algeria). Thesis. *Doc. School. Veg. Univ. Tlemcen.* 261p.
- Mezouar, K. (2016). Soil / vegetation relationships in the southern region of Tlemcen. *Mem. Mag. Univ. Tlemcen.* 120p.
- Pantis, J. and N.S. Margaris (1988). Can systems dominated by asphodels be considered as semi-deserts? *Int. J. Biometeorol*, **32**: 87–91.
- Quézel, P. (1964). The endemism in the Mediterranean region. Pierre ANDRÉ, Imp., Paris (14). 24 - 4.
- Rankiaer, C. (1904). Biological types with references to the adaptation of plants to suivre the unfavorable season. In Raunkiaer, 1934.
- Sari Ali, A. (2004). Study of soil-vegetation relationships of some halophytes in the northern region of Remchi. Mem. Mag. Univ. Tlemcen. 199 p.
- Sari Ali, A. (2012). Contribution to the study of *Arthrocnemum* glaucum stands From Oranie (Western Algeria) Taxonomy and Bio-Ecology. Thesis Doc. School. Veg. Dep. Bio. Fac. Sci. Univ. Tlemcen. 245 p + annexes.
- Sousa, W.P. (1984). The role of disturbance in natural communities. *Ann. Rev. Ecol. Syst.*, **15**: 353-391.